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Abstract. This paper is concerned with the transmission time of an incident Gaussian wave packet through
a symmetric rectangular barrier. Following Hartman (J. Appl. Phys. 33, 3427 (1962)), the transmission
time τHa is usually taken as the difference between the time at which the peak of the transmitted packet
leaves the barrier of thickness ` and the time at which the peak of the incident Gaussian wave packet arrives
at the barrier. This yields a corresponding transmission velocity cHa = `/τHa which appears under certain
conditions as a supervelocity, i.e. becomes larger than the corresponding propagation velocity in free space
which is the group velocity for electrons or the velocity of light for photons, respectively. By analysing the
propagation of a broadband wave packet (which leads in free space to an extremely concentrated wave
packet at a certain time) we obtain the pulse response function of the barrier and show that the insertion
of the barrier is physically unable to produce a supervelocity. Therefore, the peak of an incident Gaussian
wave packet and the peak of the transmitted wave packet are in no causal relationship. The shape of the
transmitted wave packet is produced from the incident wave by convolution with the pulse response of the
barrier. This yields a distortion of the shape of the wave packet which includes also the observed negative
time shift of the peak. We demonstrate further that the phenomenon of Hartman’s supervelocities is not
restricted to barriers with their exponentially decaying fields but occurs for instance also in transmission
lines with an inserted LCR circuit.

PACS. 73.40.Gk Tunneling – 03.65.Bz Foundations, theory of measurement, miscellaneous theories (in-
cluding Aharonov Bohm effect, Bell inequalities, Berry’s phase) – 05.60.Gg Quantum transport

1 Introduction

Time-dependent tunneling of particles through a barrier
was studied for the first time by MacColl [1] in 1932 by
means of an incident Gaussian wave packet. He concluded
from his simplified treatment that there is no apprecia-
ble delay in the transmission of a wave packet through a
barrier.

In order to estimate the transmission times for metal-
insulator-metal tunneling junctions, Hartman [2] treated
in 1962 this problem again and in more detail. He avoided
the numerical integration of the derived definite integral
for the transmitted wave packet and applied instead the
method of stationary phase to the integrand. This method
allows to determine the instantaneous location of the con-
structive interference of the Fourier components of the
wave packet and, hence, the instantaneous location of the
peak of the moving wave packet. If one assumes a very
narrow k distribution with its center at the wave vector
k′, a very broad real space wave packet results showing
a nearly monoenergetic particle energy E = E(k′). In
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addition, the method of stationary phase reveals (see
Sect. 2.3) that the envelope of the packet propagates with
a group velocity which is, in the one-dimensional case,

cgr(k′) =
1
~
∂E(k)/∂k

∣∣∣
k=k′

. (1)

The group velocity was introduced by Lord Rayleigh [3] in
1877 and the method of stationary phase by Thomson [4]
in 1887. Both studied wave propagation in shallow water
and also other classical waves with dispersion.

Hartman used the method of stationary phase to calcu-
late the development in time and the position of the peak
of the propagating wave packets before and also after the
barrier. There is no objection to this procedure. However,
we will raise objection to his next step. He defined the
transmission time τHa(E) as the difference between the
time at which the peak of the transmitted packet leaves
the barrier and the time at which the peak of the incident
nearly monoenergetic Gaussian wave packet arrives at the
barrier. Nowadays, this time difference is often called the
phase-delay time. For definition and discussion of other
transmission times in use, see the reviews of Hauge and
Støvneng [5], Olkhovsky and Recami [6], and Landauer
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and Martin [7]. Hartman derived (see Sect. 2.3) an ana-
lytic expression for τHa(E) and compared the numerical
results in a graph with the “vacuum transmission time”
τvac(E) = `/vgr(E) which is the time required for an inci-
dent nearly monochromatic Gaussian wave packet of en-
ergy E to transverse a distance equal to the barrier thick-
ness `. Under certain conditions, τHa(E) came out to be
shorter than τvac(E) and saturates to a constant value
which is independent of `, i.e. a supervelocity seemed to
occur for the particle passing through the barrier in com-
parison with the group velocity cgr(E) for the particle
propagating in free space. At that time in 1962, this result
was acceptable, since it seemed not to violate fundamental
principles of physics.

However, there exists a strong analogy between par-
ticle tunneling through a potential barrier and the trans-
mission of an electromagnetic wave or photon through the
air gap between two prisms under conditions of total re-
flection [8]. In order to study photon tunneling in analogy
to electron tunneling, Martin and Landauer [9] proposed
in 1992 a suitable setup for electromagnetic waves using
a rectangular metal waveguide filled with a material of
dielectric constant ε1 > 1. Only a barrier region of thick-
ness ` contains air (ε = 1). The frequencies are chosen in
such a way that transmission occurs in the dielectric filled
waveguide but exponentially decay in the air gap. For this
waveguide setup, Martin and Landauer derived the same
analytic expressions for the complex (amplitude) trans-
mission factor as it is known from Schrödinger’s equation
for a rectangular barrier. Thus, Hartman’s method can be
transferred directly to this waveguide setup and predicts
the occurrence of a supervelocity for passing the barrier.
Already in 1983, Bosonac [10] found theoretically that an
electromagnetic wave packet is transferred with superlu-
minal velocity across a vacuum barrier under conditions of
total reflection if the peaks of the wave packets are taken
as reference. In this case, the problem occurs that this su-
pervelocity is higher than the velocity c of a plane wave
of light in vacuum.

Einstein [11] founded in 1905 his theory of special rel-
ativity on the principle of relativity (“physical laws are
the same in all inertial systems”) and on the principle
that “the highest velocity of light in each inertial system
is c”. By adding the principle of (strict) causality (“no
effect can precede the cause”), Einstein [12] showed in
1907 that, within the validity of these three principles,
c is the highest velocity for all kinds of signals that are
able to produce a physical effect. To our present knowl-
edge, these signal events can only be produced by mass
or energy transfer. Other often discussed and only mathe-
matically as a function of time defined “signals” may have
no physical relevance. Special waveforms (i.e. plane wave,
exponentially decaying near field, dipole wave, or others)
are irrelevant in Einstein’s derivation. Therefore, we have
to conclude that the occurrence of a superluminal velocity
in the exponentially decaying near field of the barrier vi-
olates at least one of the three cited principles. However,
for this statement, one has to verify that the superluminal
velocity under question is actually a velocity of matter or

energy, i.e. it is a causal velocity which only can produce
a physical effect.

Recently, several waveguide experiments [13,14] have
been done which show with certainty that the transmission
time can be so short that superluminal velocities occur
– whereby however, the transmission time was measured
according to the stated definition of Hartman using the
peaks of the two wave packets. Also, optical experiments,
using two prisms under conditions of total reflection with
a variable air gap between them [15] or using a stopband
of dielectric multilayers [16,17], are in accordance with
Hartman’s superluminal velocities.

Büttiker and Landauer [18] suggested in 1982 that
there is no physical justification for connecting the inci-
dent peak to the transmitted peak. Landauer and Mar-
tin [19] tried in 1992 to demonstrate this lack of causality
between both peaks by discussing a special model. They
stated that the high-energy components of a Gaussian par-
ticle wave propagate faster than the other components
and concluded that they therefore reach the barrier first.
They argued further: since the high-energy components
are more effectively transmitted than the following com-
ponents of lower energy, the transmitted wave packet is
mainly due to the front part of the incident wave packet
and hence both peaks are not causally related. However,
one has to object that a position within the wave packet
for high-energy and low-energy particles does not exist
since they are described as Fourier components. Moreover,
it is obvious that such a model fails to explain the elec-
tromagnetic case, where dispersion can be avoided.

Yun-ping and Dian-lin [20] explained in 1995 how an
apparent superluminal velocity can occur due to reshaping
a photonic wave packet as a consequence of destructive
interference in a multi-path setup.

In the course of the following discussion of electron
and photon tunneling through a barrier, it will become
evident too that there is indeed no causal relationship be-
tween both peaks. The positive or negative time delay for
the peak of the transmitted wave packet is influenced by
both the phase change and the amplitude reduction of the
plane wave components in passing the barrier or any other
obstacle.

We start in Section 2 with the quantitative description
of the transmission of incident plane waves and Gaussian
wave packets through a barrier and explain Hartman’s
treatment which leads to supervelocities. In Section 3, we
will prove that the insertion of the barrier never produces
a shorter physical transmission time than those that oc-
curs without barrier, i.e. no physical supervelocities occur.
Thereafter, in Section 4, we will show that the distortion
of the wave packet and the associated negative time shift
of the peak position can also be observed with a LCR-
resonance circuit inserted in a double-conductor transmis-
sion line. Other suitable circuits can also be used. Here, no
barrier or tunneling is involved. As a consequence of these
investigations, we will have to conclude that Hartman’s
definition of the transmission velocity and the correspond-
ing measured transmission “velocities” are irrelevant from
the physical point of view.
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2 Transmission of incident plane waves
and Gaussian wave packets through a barrier

For the quantitative discussion, in the following sections
we present the necessary analytic expressions and perform
numerical calculations in order to illustrate and better
understand the present problem. In discussing Hartman’s
method, we use also a slightly modified notation and use a
unified treatment for particle energies E above and below
the barrier energy V1. Figure 1 may help to explain the
notation and the procedure.

2.1 Rectangular barrier as a linear time-invariant
system

We start with a particle travelling in the +z direction
using the time-dependent plane-wave solution

ψk(z, t) = ψ0ei{kz−E(k)t/~} (2)

of Schrödinger’s wave equation, which connects the one-
particle energy E with the wave vector k by the dispersion
relation

E(k) = ~2k2/2m+ V where k =
√

2m{E − V }/~,
(3)

where m is the effective mass and V is a constant poten-
tial. We treat a symmetric rectangular barrier and take
the potential V = 0 in the region (0) before and in the
region (2) after the barrier, and V = V1 > 0 in the barrier
region (1) (see Fig. 1). To avoid in the following the super-
scripts in the corresponding three wave vectors k(0), k(1),
and k(2), we will use the notation k ≡ k(0) = k(2) in both
halfspaces with V = 0 and replace later in equation (16)
the quantity ik(1) in the barrier region (V = V1) by the
propagation constant γ.

In order to describe the incident wave packet ψ(z, t), a
suitable superposition of these plane waves is chosen. This
corresponds to the Fourier integral

ψ(z, t) =
∫ ∞
−∞

ψ(k, t)eikzdk/2π, (4)

where the Fourier components in z at time t are given by

ψ(k, t) = ψ(k, t = 0)e−iE(k)t/~

= ψ(k, t = 0)e−i~k2t/2m (5)

with ψ(k, t = 0) the spectral probability amplitude of the
plane wave components which have to be specified at t =
0. Only spectral components with positive wave vector
k > 0 can contribute to a wave packet propagating in the
+z direction.

Since we have a constant potential in each of the three
regions, we are concerned with a linear time-invariant sys-
tem. In a linear system, the superposition of system inputs
leads to an output which consists of a superposition of the

partial outputs which have the same weights as the par-
tial inputs. In our case, the partial system inputs are the
plane waves (described by Eq. (2)) which are connected
with their outputs – their transmitted plane waves (sta-
tionary solutions) ψTk (z, t) – by the complex (amplitude)
transmission factor T (k)

ψTk (z, t) = T (k)ψk(z, t). (6)

Therefore, the whole input (Eq. (4)) generates as an out-
put the transmitted wave packet valid for z after the
barrier

ψT (z, t) =
∫ ∞
−∞

T (k)ψ(k, t)eikzdk/2π. (7)

Applying the well-known convolution theorem, the trans-
mitted wave packet can also be expressed as a convolution
T (z) ∗ ψ(z, t) valid for z after the barrier

ψT (z, t) =
∫ ∞
−∞

T (z − z′)ψ(z′, t)dz′

=
∫ ∞
−∞

T (z′)ψ(z − z′, t)dz′, (8)

where we have used the Fourier integral (4) and

T (z) =
∫ ∞
−∞

T (k)eikzdk/2π. (9)

2.2 Scattering of plane waves: (amplitude)
transmission factor

As shown in Figure 1, we denote the barrier thickness by
` and the height by V1. Instead of V1, we may also use the
corresponding wave vector kV , defined by

E(kV ) = V1 or kV =
√

2mV1/~. (10)

The transmission of plane waves through a rectangular
barrier was first investigated by Nordheim [21] in 1928
and a sign error was corrected by Fowler [22] in 1929. The
(amplitude) transmission factor can be written [23] as

T (k) =
e−ik`

coshγ`+ i
2{γ/k − k/γ} sinhγ`

, (11)

where the propagation constant γ ≡ γ(1) in the barrier
region (1) is expressed by

γ2 = k2
V − k2 or γ = ik

√
1− k2

V /k
2 = i

√
k2 − k2

V ,

(12)

i.e., we have to choose in the following the sign of the
square root always positive in order to obtain the correct
propagation constant in the limit kV = 0. Hence, we have

γ =
{

ik(1) = i
√
k2 − k2

V = ikV
√
E/V1 − 1 ifE > V1

−α(1) = −
√
k2
V − k2 = −kV

√
1−E/V1 ifE < V1,

(13)



138 The European Physical Journal B

Fig. 1. Sketch of a Gaussian k spectrum, the dispersion curve, and the energy spectrum, the rectangular potential barrier, and
the wave packet before and after the barrier.

since E/V1 = k2/k2
V .

For all possible values of γ, the first term in the de-
nominator of (11) is always real and the second imaginary.
Therefore, we can easily rewrite T (k) in polar form by us-
ing its absolute value and its phase factor

T (k) = |T (k)|eiϕT (k), (14)

where the absolute value is obtained as

|T (k)| = 1√
cosh2 γ`+ 1

4{γ/k − k/γ}2 sinh2 γ`

=
1√

1 + 1
4{γ/k + k/γ}2 sinh2 γ`

=
1√

1 + sinh2 (kV `
√

1−E/V1)/{4(1−E/V1)E/V1}
(15)

and where the phase ϕT (k) is given by

ϕT (k) = −k`− arctan
{

1
2
{γ/k − k/γ} tanhγ`

}
= −k`+ arctan

{√E/V1 −
√
V1/E/2√

1− E/V1

× tanh(kV `
√

1−E/V1)
}
· (16)

As can be seen, we have in the limit E � V1 the phase
ϕT (k) = 0 which yields as expected a transmission factor
T (k) = 1. At E = V1, the phase is ϕT (k) ≈ −ik`+ 30◦.

Figure 2 gives an impression of the absolute value and
of the phase of T (k) as a function of the two dimensionless
parameters k/kV and kV `. The barrier can be character-
ized by the single parameter kV `.

Fig. 2. Graphic representation of the complex (amplitude)
transmission factor T (E(k)) of a symmetric rectangular bar-
rier. The absolute value and phase are plotted as a function
of the two dimensionless quantities k/kV =

p
E/V1 and kV `,

where V1 is the barrier height and ` is its thickness.

2.3 Hartman’s transmission time and associated
supervelocities

The method of stationary phase gives the position z of
constructive interference of the Fourier components within
the wave packet at each time. Applied to the integrand
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F (k/kV , kV `) =
1
`

∂

∂k
ϕT (k) + 1 =

sinh (2kV `
√

1−E/V1)/{kV `
√

1−E/V1}+ {1− 2E/V1}2E/V1

{1− E/V1}4E/V1 + sinh2 (kV `
√

1−E/V1)
· (21)

of (4) with real ψ(k, t = 0), we obtain for the incident
wave packet the condition

0 =
∂

∂k
{kz −E(k)t/~} = z − 1

~
∂E(k)
∂k

t

= z − cgr(k)t (17)

and for the transmitted wave packet according to (7, 14)
the condition

0 =
∂

∂k

{
ϕT (k) + kz −E(k)t/~

}
= z − cgr(k)t+

∂

∂k
ϕT (k). (18)

If ψ(k, t = 0) is complex, the phase contributions would
cancel later in calculating τ(k). According to (17), the
peak of the incident wave packet reaches the barrier at
z = −z′ at the time t1 = −z′/cgr(k). At z = −z′ + `,
the peak of the transmitted packet appears at the time
t2 = 1/cgr(k){−z′ + `+ ∂{ϕT (k)}/∂k}.

Hence, the transmission time due to Hartman is

τHa(k) = t2 − t1 =
`

cgr(k)

{1
`

∂

∂k
ϕT (k) + 1

}
≡ τvac(k)F (k/kV , kV `). (19)

Here, we have introduced as an abbreviation the factor
F (k/kV , kV `) which has the meaning of a time delay fac-
tor. Its reciprocal value describes the relative enhancement
of the mean transfer velocity

cHa(k)/cgr(k) = 1/F (k/kV , kV `). (20)

This factor can be written by means of (16) as

see equation (21) above.

Whereas Hartman was mainly interested in the transmis-
sion time, we are more interested in the velocity ratio (20).
We have calculated this ratio and obtained the graph of
Figure 3. As can be seen, the already mentioned super-
velocities cHa(k) > cgr(k) occur in the tunneling region
k < kV for barriers with kV ` about unity and larger. In the
limit of a high and broad barrier (E � V1, kV `� 1), we
obtain directly from (21) that Hartman’s transfer velocity
cHa(k)/cgr(k) becomes kV `/2 and thus rises proportional
to the barrier length `.

2.4 Scattering of a Gaussian wave packet

To confirm that the method of stationary phase used by
Hartman gives the right result, we consider a Gaussian

Fig. 3. Graph of the mean transfer velocity cHa(k) as can be
deduced from Hartman’s assumptions in comparison with the
group velocity cgr(k) which occurs before and after the barrier
region.

wave packet. In order to obtain a normalized incident
Gaussian pulse in (4), one has to choose a Gaussian distri-
bution in the k spectrum at t = 0, which may be centered
at kG > 0 with the k spread ∆k in the form

ψ(k, t = 0) =
√

2
√
π/∆k e

− 1
2

{
k−kG
∆k

}2

. (22)

Introducing this distribution into (4) and performing the
integration yields a Gaussian wave packet in real space
with a maximum height and with minimum spread at
t = 0. The wave packet becomes broader and lower
with increasing time, but remains always a normalized
Gaussian wave packet. As expected, the propagation of
the peak occurs with group velocity cgr(kG). One finds
furthermore that the time-dependent change of the pulse
can be neglected for times in the range ±∆t fulfilling the
condition

cgr(kG)∆t� kG/{∆k}2. (23)

Under this condition, the propagating Gaussian wave is
given by

ψ(z, t) =
√
∆k/π ei{kGz−EGt/~}e−{z−cgr(kG)t}2∆k2/2

(24)

where EG ≡ ~2k2
G/2m. The Gaussian envelope (last factor

in (24)) propagates with group velocity cgr(kG) = ~kG/m
and contains an oscillating wave (second factor in (24))
which travels with the slower phase velocity

cph(EG) = {EG/~}/kG = ~kG/2m. (25)
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ψT (z, t) =

q
2
√
π/∆k

∞Z
−∞

T (k)e
− (k−kG)2

2(∆k)2 ei{kz−E(k)t/~}dk/2π

= 1/

q
2π
√
π∆kei{kGz−E(kG)t/~}

∞Z
−∞

dk T (k)e
− (k−kG)2

2(∆k)2 ei
�

(k−kG)z−[cgr(kG)− ~
2m (k−kG)]t

	
. (26)

If a barrier is inserted, the transmitted wave packet is,
according to (7, 22),

see equation (26) above.

Neglecting the pulse broadening due to dispersion, the ab-
solute value of the transmitted wave packet is given by

|ψT (z, t)| = 1/
√

2π
√
π∆k

×
∣∣∣∣∣
∞∫
−∞

dk
e−ik`

cosh γ`+ i
2{γ/k − k/γ} sinhγ`

× e−
(k−kG)2

2(∆k)2 ei(k−kG){z−cgr(kG)t}

∣∣∣∣∣. (27)

It seems to be impossible to obtain an analytic solution
of this integral. However, if the energy EG ≡ E(kG) of
the peak of the Gaussian distribution lies very high above
V1, we will obtain an unperturbed propagation of the inci-
dent Gaussian pulse. By lowering EG more and more, an
increasing part of the lower end of the k distribution will
be removed by the barrier. In any case, the remaining k
distribution is shifted in phase.

In order to obtain information about the true envelope
of the transmitted wave packet, we performed a numerical
investigation of relation (27). We choose an incident nor-
malized Gaussian wave packet with a spread∆k/kG = 0.1
and calculated, for three different peak positions in k space
(kG/kV = 0.9, 0.7, and 0.5) and for a set of twelve kV `
values (kV ` = 0, 1, to 11), the absolute value |ψT (z, t)| of
the transmitted wave packet. These results are compiled as
graphs in Figure 4. The absolute value is given in dimen-
sionless form |ψT (z, t)|/

√
kV as a function of the dimen-

sionless propagation argument kV {cgr(kG)t− z}. For each
of the three chosen kG/kV positions, the incident Gaus-
sian wave packet is represented by the envelope denoted
by kV ` = 0 since ` = 0 means an unperturbed propagation
in the z direction. The width of the Gaussian wave packets
rises from kG/kV = 0.9 to 0.5 since the relative band width
∆k/kG in k space is taken as a constant. The peak reaches
position z = 0 at time t = 0 and propagates thereafter in
the halfspace z > 0 with the same group velocity cgr(kG).
If we have a barrier of thickness ` > 0 anywhere in the re-
gion on the left hand of our observation interval, the eleven
envelopes (kV ` = 1 to 11) represent the transmitted wave
packets which can be directly compared with the Gaus-
sian wave packet kV ` = 0 since they propagate with the
same group velocity cgr(kG). According to condition (23),

Fig. 4. Absolute value of the wave function of the transmitted
wave packet |ψT (z, t)| as a function of the common travelling
wave argument kV (cgr(kG)t − z). All chosen parameters are
indicated. The incident Gaussian wave packet is indicated by
kV ` = 0. The barrier is characterized by kV ` > 0 and inserted
somewhere to the left at the negative z axis. The shape distor-
tion with rising barrier thickness is mainly visible as a reduc-
tion in amplitude and shift of the peak. The peak positions,
derived from the method of stationary phase, are indicated by
arrows for the case kG/kV = 0.5.
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we are free from pulse broadening due to dispersion for
times ∆t which gives here in the worst case (kG/kV = 0.5)
the condition kV cgr(kG)∆t � (kG/∆k)2kV /kG = 200.
This corresponds to a dispersionless propagation at least
about ten times the interval used in Figure 4, i.e., the
envelopes remain as shown at least in this time interval.

As expected, we obtain a strong reduction in ampli-
tude by increasing the barrier thickness. Of course, this
reduction is highest for the lowest kinetic energy (kG/kV
= 0.5). For the highest kinetic energy (kG/kV = 0.9), most
of the partial waves have a wave vector k < kV , but a
certain number have energies above the barrier and have
k > kV . A strong pulse distortion is the result, especially
for thicker barriers.

Now, we concentrate our attention on the pulse distor-
tion for kG/kV = 0.7 and 0.5. In both cases, the position of
the peak is shifted with increasing barrier thickness first
to the right (delayed) and then to the left (advanced).
This is in accordance with Hartman’s result. For a quan-
titative comparison, we deduce from (17, 18) the shift δ( )
of the peak of the transmitted pulse relative to the free
propagating Gaussian pulse

δ(kV {cgr(k) · t− z}) = kV
∂

∂k
ϕT (k)

∣∣∣∣
k=kG

= kV `[F (kG/kV , kV `)− 1]. (28)

These peak positions of a nearly monoenergetic pulse of
energy EG are indicated by arrows in Figure 4 for the case
kG/kV = 0.5. Their agreement with the peak positions of
the calculated envelopes of the transmitted pulses is ex-
cellent despite of the finite line width ∆k/kG = 0.1. In ad-
dition, this agreement shows the reliability of the method
of stationary phase to determine the peak positions.

At first glance, the transmitted wave packets for
kG/kV = 0.7 and 0.5 seem to be Gaussian in shape, ob-
viously due to the dominant Gaussian factor in the inte-
grand of (27).

3 Impossibility of physical supervelocities
in a symmetric rectangular barrier

In the following we will prove that no physical superve-
locities can be involved. This will be done by constructing
a special wave packet with a broad k spectrum which is
extremely concentrated at z = 0 at the time t = 0 if no
barrier is present. This wave field will be compared with
the modified wave field near z = 0 that appears at the
same time t = 0 if a barrier is inserted which the wave
packet has passed. Here, the actual position of the barrier
on the negative z axis has no influence since T (k) in (7)
does not depend on this position. In the limit of an infinite
broad k spectrum we obtain the pulse response function of
the barrier which is T (z) and we will show that T (z) = 0
for z > 0. If we consider an arbitrary incident wave packet
ψ(z, t), then the shape ψT (z, t) after passing an inserted
barrier is obtained according to (8) from the convolution
of the incident wave packet with T (z). Since T (z) = 0 for

z > 0, it is clear from (8) that, if the incident wave packet
is equal zero at t = 0 for z > 0 when propagating in free
space, the wave packet ψT (z, t) transmitted through the
barrier is zero too for z > 0 at t = 0. The tunneling wave
packet is therefore not advanced.

3.1 Short pulse using a broadband k spectrum

An incident Gaussian wave packet becomes narrower in
space with increasing spread ∆k. In order to investigate
pulse propagation with pulses in real space that are as
short as possible, we have to use a “white” k spectrum.
The broadest k spectrum for a pulse traveling in +z direc-
tion starts at k = 0 and extends in the limit to k = +∞.
To see the influence of the transition to the infinitely wide
spectrum and to connect the treatment to those of the
preceding section, we choose the following normalized half-
sided Gaussian spectrum with kG = 0 and width ∆k

ψ(k, t = 0) =

{
2
√√

π/∆ke−
1
2

{
k
∆k

}2

if k ≥ 0
0 else.

(29)

According to (4, 5), the corresponding wave function of
the incident wave packet is described by a definite inte-
gral which can be directly integrated with the help of the
complementary error function erfc( )

ψ(z, t) =
1
π

√√
π/∆k

∞∫
0

dke−k
2/(
√

2∆k)2
e−i~k2t/2meikz

(30)

=
√

1/{2
√
πa∆k}e−z2/2a erfc(−iz/

√
2a), (31)

where

a = 1/{∆k}2 + i~t/m, (32)

erfc(u) = 1− erf(u) = 2/
√
π

∫ ∞
u

dv exp(−v2). (33)

The absolute value |ψ(z, t)| is sketched in Figure 5 for the
times t < 0, t = 0, and t > 0, with a broad spectrum with
finite spread ∆k in the first column and with the limit
∆k →∞ in the second column.

For t = 0, expression (31) simplifies to

ψ(z, t = 0) =
√
∆k/2

√
πe−(z∆k)2/2erfc(−iz∆k/

√
2).

(34)

The absolute value of this expression describes by its
second factor a narrow Gaussian wave packet of spread
1/∆k in real space, centered at z = 0. However, this
packet is symmetrically deformed and broadened due to
the last factor, the complementary error function. Since
the wave packet is normalized and becomes narrower with
increasing ∆k, we have a sharply peaked function at z= 0
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T (z) =
∫ ∞
−∞

T (k)eikzdk/2π =
∫ ∞
−∞

eikzdk/2π +
∫ ∞
−∞
{T (k)− 1}eikzdk/2π

= δ(z) +
∫ ∞

0

{T (k)− 1}eikzdk/2π +
∫ ∞

0

{T (−k)− 1}e−ikzdk/2π

= δ(z) +
∫ ∞

0

[
{T (k)− 1}eikz + c.c.

]
dk/2π = δ(z) + 2Re

∫ ∞
0

{T (k)− 1}eikzdk/2π. (37)

Fig. 5. Time behaviour of a wave packet with broadband k
spectrum under the influence of dispersion during free one-
dimensional propagation in the +z direction. The chosen spec-
trum begins at k = 0, is of Gaussian shape, and has a spread
∆k. In order to use dimensionless quantities, an arbitrary ref-
erence kV is used. The three diagrams on the left correspond
to a finite width ∆k = 1000 kV whereas the width is taken to
be infinite on the right. At t = 0 the wave function is sharply
peaked at z = 0, i.e. the electron will be localized there. The
broader the spectrum, the more the wave function is totally re-
stricted to the negative halfspace for t < 0 and to the positive
halfspace for t > 0. Diagrams 1 and 3 on the left are calculated
for times given by kV cgr(kV )|t| = 0.05.

at the time t =0 and may replace it in the limit ∆k →∞
by

∣∣∣ψ(z, t = 0)
√
∆k
∣∣∣
∆k→∞

=
∣∣∣∆k/ 4

√
πe−(z∆k)2/2

∣∣∣
∆k→∞

= 4
√

2πδ(z). (35)

Hence, the position probability density narrows extremely
at t = 0 to a Dirac delta function δ(z) at z = 0.

Since we treat only pulse propagation in the +z di-
rection and include dispersion which gives rise to group
velocities proportional to the magnitude of the k vector,
the sharply peaked wave packet at t = 0 was spread out
for t < 0 mainly in the negative z region from about
z = −cgr(∆k)|t| to about z = 0 and for t > 0 mainly
in the positive z region from about z = 0 to about
z = cgr(∆k)|t|. The partial waves with small k value con-
tribute mainly to the wave packet in the neighborhood of
z = 0, whereas the higher values contribute to the more
distant parts.

The expression for the transmitted wave packet
becomes

ψT (z, t) = 1/
√
π
√
π∆k

∞∫
0

dkT (k)

× e−k
2/(
√

2∆k)2
e−i~k2t/2meikz . (36)

In the following discussion, it is more convenient to eval-
uate ψT (z, t) by means of the convolution integral (8).
This integral shows directly that in the case of an excita-
tion in the form of a Dirac delta pulse ψ(z) = const δ(z)
the transmitted wave packet is given by the delta-pulse
response (Green’s function) defined in (9)

see equation (37) above.

In the first line, the splitting of the integral takes account
of the fact that for |k| � |kV | we have T (k) ≈ 1, i.e. the
barrier does not disturb the propagation. This delta-pulse
response (37) is plotted in Figure 6 using kV ` = 0, 1, 2,
4, 6, 8 as parameters. Whereas the first term in (37) re-
produces the incident wave packet at t = 0, the second
term in this delta-pulse response gives the deviations at
t = 0 in z space due to the influence of the barrier. We
remember that we have inserted the barrier at a sufficient
large distance from z = 0 on the negative z axis in order
to discuss the wave packet after the barrier. In this way,
a direct comparison can be made in the neighborhood of
z = 0 between the wave function without a barrier and
the modified wave function after having passed the in-
serted barrier. It is important to note that if the second
term in (37) delivers a contribution in the region z > 0,
the transfer velocities of some partial plane waves must
be higher than their group velocity, i.e. the insertion of
a symmetrical barrier would cause supervelocities. Figure
6 reveals that we have at t = 0 for all five numerically
investigated barriers no wave function in the region z > 0,
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T (z) =

∞∫
−∞

T (k)eikzdk/2π =

∞∫
−∞

e−ik`eikz

coshγ`+ i
2{γ/k − k/γ} sinhγ`

dk
2π

=

∞∫
−∞

i4kγe(γ−ik)`eikz

(γ + ik)2 − (γ − ik)2e2γ`

dk
2π

=

∞∫
−∞

i2kγe(γ−ik)`eikz

(γ + ik)2

{
1

1− eγ`(γ − ik)2/k2
V

+
1

1 + eγ`(γ − ik)2/k2
V

}
dk
2π

(38)

Fig. 6. The incident wave packet of an electron in vacuum
reaches at t = 0 the origin z = 0 in the form of a Dirac-delta
pulse (case kV ` = 0). If a barrier, fully described by kV ` > 0,
is inserted on the left of the shown abscissa, the transmitted
wave function takes at t = 0 the spatial dependence shown in
the corresponding diagrams. In the case of photons, where no
dispersion occurs, the wave function shown travels to the right
with the velocity of light.

i.e. no supervelocities occur. This statement, based on
the numerical investigation, will be proven to be general
in the next section by an analytic investigation of the sec-
ond term.

In the dispersionless case of photon tunneling across
the vacuum gap between two prisms, the simplification
consists only in the fact that the incident pulse δ(z − ct)
and also the transmitted wave packet do not change
their envelopes during propagation. Since T (z) is the
same, we have to conclude that in this arrangement no
superluminal velocities occur as well.

3.2 Analytic proof that no supervelocities occur
during transmission through a symmetric barrier

According to the results of the last section, we have to
prove analytically that T (z > 0) = 0 for all times t ≤ 0.
To this purpose, we use contour integration in the complex
k = k′ + ik′′ plane. The integral

see equation (38) above

can be closed by a semicircle in the infinity of the upper
halfspace k′′ > 0 since the argument vanishes there for
z > 0 with sufficient strength. As Cauchy has shown, this
contour integral gives only contributions at the enclosed
poles of the integrand according to 2πi times the sum of
their residues. However, we will show now that there are no
poles at all in the upper halfspace. This yields the wanted
result: T (z) = 0 if t ≤ 0 and z > 0.

First we notice that there are no poles of the integrand
at the real k axis since |T (k)| is according to (15) always
greater than or equal to unity. In the complex k plane,
the poles of the integrand of (38) must fulfill the condition
(with n = 0 or ± 1,±2, ...)

eikV
√
k2/k2

V−1`/2 = 1/
{
k/kV −

√
k2/k2

V − 1
}

einπ/2 ={
k/kV +

√
k2/k2

V − 1
}

einπ/2, (39)

where we have used expression (12) for γ. If kρ is the
position of a pole then −k∗ρ also fulfills relation (39), i.e.
poles always lie symmetric to the imaginary axis or on it.
Taking the natural logarithm of (39) gives

ikV
√
k2/k2

V − 1`/2 = ln {k/kV +
√
k2/k2

V − 1}+ inπ/2

and thereafter taking the real part of this expression, we
obtain the condition

−Im
{√

k2/k2
V − 1

}
=

2
kV `

ln
∣∣∣∣k/kV +

√
k2/k2

V − 1
∣∣∣∣ .

(40)

The term on the right is outside of the real axis always
greater than zero. Therefore, we may also write the con-
dition for poles

Im
{√

k2/k2
V − 1

}
< 0. (41)
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Since
√
k2/k2

V − 1 maps the content of the upper k/kV
half plane again onto the upper half plane, condition (41)
is not fulfilled in the upper half plane. Hence, the upper
half plane is free of poles. It is this statement we wanted
to prove.

There are an infinite number of poles in the lower k/kV
half plane.

4 Distortion of a Gaussian voltage pulse
by inserting a parallel resonance circuit
into a transmission line

We have seen that the distortion of a Gaussian wave
packet in crossing a barrier is responsible for the incor-
rectly claimed supervelocities. In the following, we want
to show that an analogous distortion with corresponding
“supervelocities” appears also in a transmission line with
inserted concentrated LCR-circuit elements, i.e. there is
no need for a barrier with associated exponential field de-
cay or tunneling to demonstrate the Hartman effect.

In this connection, we have to mention the pure time-
domain investigations of Mitchell and Chiao [24]. They
demonstrated with very low frequency bandpass ampli-
fiers that a Gaussian input pulse may yield a similar out-
put pulse which precedes with its peak that of the input
pulse. The amplification in this active system masks that
both the phase shift and the signal attenuation of the LCR
filters used are essential for this remarkable signal distor-
tion. We hope that this aspect becomes more evident in
the following discussion of our chosen passive system.

We consider an infinite homogeneous lossless transmis-
sion line which may be a coaxial line, a Lecher line or any
other double-conductor line with lateral dimensions small
in comparison to the wavelength. The characteristic line
impedance is denoted by Z0 (see Fig. 7). The extension `′
of this circuit is always taken equal zero since we consider
a concentrated LCR parallel resonance circuit with a po-
sition in one of the conductors anywhere between z = −`
and z = 0. However, other circuits can also be used. Some
examples are a parallel CR circuit in one conductor, a
LCR series resonance circuit between both conductors,
and more complicated circuits.

We assume that an incident Gaussian voltage pulse
with center frequency ωG, spread ∆t, peak value uG, and
propagation velocity equal to the velocity of light c travels
to the right:

u(z, t) = uGe−(t−z/c)2/2∆t2 cos {ωG(t− z/c)}. (42)

Hence, if no LCR-circuit is inserted, the voltage at posi-
tion z = 0 becomes

u(z = 0, t) = uGe−t
2/2∆t2 cosωGt (43)

with the associated Fourier spectrum

u(z = 0, ω) =√
π

2
uG

∆ω

{
e−(ω−ωG)2/2∆ω2

+ e−(ω+ωG)2/2∆ω2
}

(44)

Fig. 7. Double-conductor transmission line with parallel LCR
resonance circuit inserted into one of the conductors. The
transmission factor T (ω) describes in the complex plane a circle
as a function of frequency for the case ` = 0, i.e. with the circuit
at z = 0. This gives rise to a phase dependence on frequency
ϕT (ω) with positive slope in a frequency band containing the
resonance frequency ω0. Therefore, choosing appropriate cir-
cuit parameters and an incident Gaussian wave packet centred
at ω0, a negative time shift of the peak of the transmitted wave
packet in comparison with the peak of the incident wave packet
should occur. The two diagrams of the calculated wave pack-
ets show indeed that the peak of the transmitted wave packet
leaves earlier the position of the circuit at z = 0 than the peak
of the incoming Gaussian wave packet arrives. Please note the
different vertical scales in these two diagrams.

where ∆ω = 1/∆t.

The insertion of the resonance circuit at z = 0 gives
rise to a (amplitude) reflection factor R(ω) = {Z0 −
z(ω)}/{Z0 + z(ω)} where the impedance z(ω) is given by
the impedance z′(ω) of the resonance circuit in series with
the input impedance Z0 of the following line. The Fourier
component u1(ω) just before the resonance circuit is given
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by the superposition of the incident and reflected waves

u1(ω) = u(z = 0, ω){1 +R(ω)}
= u(z = 0, ω)/{1 + z′(ω)/(2Z0)}. (45)

The Fourier component u2(ω) = u1(ω)Z0/{Z0 + z′(ω)}
just after the resonance circuit relative to the incident
Fourier component u(z = 0, ω) defines the (amplitude)
transmission factor of a line junction of length ` = 0
containing the resonance circuit

T (ω) ≡ |T (ω)|eiϕT (ω) =
u2(ω)

u(z = 0, ω)
=

1 + i2R/
√
L/C{ω/ω0 − ω0/ω}

1 +R/(2Z0) + i2R/
√
L/C{ω/ω0 − ω0/ω}

, (46)

where we have used the expressions derived earlier and
the resonance frequency ω0 = 1/

√
LC. The time depen-

dent voltage uT (z = 0, t) = u2(t) just behind the in-
serted resonance circuit follows by Fourier transforming
equation (46)

uT (z = 0, t) =

∞∫
−∞

T (ω)u(z = 0, ω)
dω
2π

=

1√
2π

uG

∆ω

∞∫
0

{e−(ω−ωG)2/2∆ω2
+ e−(ω+ωG)2/2∆ω2}|T (ω)|

× cos {ϕT (ω) + ωt}dω, (47)

where we have used (44) in the last line. The peak posi-
tion of the transmitted wave packet (47) occurs at z = 0
according to the method of stationary phase at the time

t2 = −∂ϕT (ω)/∂ω at ω = ωG. (48)

Depending on the sign of ∂ϕT (ω)/∂ω, the start time t2 of
the peak of the transmitted wave packet at z = 0 after
the inserted resonance circuit may be earlier or later in
comparison with the arrival time t = 0 of the peak with-
out the inserted LCR circuit which is equal to the arrival
time t1 = 0 at z = 0 just in front of the resonance cir-
cuit. Thus, we have to ask: Does a frequency region exist
where ∂ϕT (ω)/∂ω is positive? This would mean accord-
ing to (48) that the transmitted voltage peak behind the
resonance circuit leaves the position z = 0 earlier than
the peak of the incident wave packet arrives at the circuit
at z = 0. To answer this question, we look at the plot
of T (ω) as a function of frequency in the complex plane.
One obtains a circle (see Fig. 7) starting at T (ω = 0) = 1
and ending at the same value for ω =∞. With rising fre-
quency, the phase change ∂ϕT (ω)/∂ω is negative at first,
becomes positive around the resonance frequency ω0 and
thereafter becomes negative again. This is also visible in
the plot of ϕT (ω) calculated for the noted special values of
the resonance-circuit elements. We learn from these plots
that an incident Gaussian packet with center frequency
ωG = ω0 should show this peculiar effect. This can also

be shown by numerical integration of the integral (47).
One obtains the diagram of the transmitted wave packet
{uT (z = 0, t)/uG}2 in Figure 7 which can be directly com-
pared with the incident wave packet {u(z = 0, t)/uG}2 at
the same position without the inserted resonance circuit.
We observe indeed that the peak of the transmitted wave
packet leaves the position z = 0 earlier, i.e. at t2 < 0,
than the peak of the incident Gaussian packet arrives at
t1 = 0. Of course, the transmitted packet has a strongly
reduced peak amplitude which guarantees causality, i.e.
that, at any instant, the transmitted energy can fully be
taken from the already arrived energy.

In the last step of our present discussion, we consider
a finite line section between z = −` and z = 0 as shown
in Figure 7. The travelling time across this section with-
out the resonance circuit is `/c. If we insert anywhere in
this section the resonance circuit and if we take according
to Hartman the two peaks as reference, the transmission
time of this section becomes `/c+ t2. Hence, we obtain a
transmission velocity

cHa = `/(`/c+ t2) = c/(1 + t2c/`)

= c/{1− ∂ϕT (ω)/dωc/`} (49)

which becomes in regions of a finite negative t2 or positive
∂ϕT (ω)/dω, respectively, a superluminal velocity of arbi-
trary high magnitude depending only on the chosen length
`. Moreover negative transmission velocities cHa are pos-
sible.

The result of this example has again demonstrated that
Hartman’s method of defining the transmission times is
unacceptable in physics.

5 Summary and conclusion

We studied in detail analytically as well as numerically the
transmission of an incident Gaussian wave packet through
a symmetric rectangular barrier for electrons and for light.
In the following, we summarize the main results and con-
clusions of this paper.

(1) The shape of the transmitted wave packet was cal-
culated by numerical integration for several sets of param-
eters. The peak positions were compared with the predic-
tions from the method of stationary phase. As expected,
both are in full agreement with one another. It is known
from the literature that they are also in agreement with
the results of electromagnetic wave-packet experiments.

(2) Hartman defined his transmission time τHa by tak-
ing the time difference between the appearance of the peak
of the transmitted wave packet after the barrier and the
arrival of the peak of the incident Gaussian wave packet
at the front of the barrier. The transmission velocity cHa

derived from τHa and the barrier thickness yields under
certain conditions supervelocities, i.e. velocities greater
than the electron velocity or velocity of light in vacuum,
respectively.

(3) By considering the propagation of a broadband
pulse with the limiting case of an infinite bandwidth, we
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were able to prove in the present paper that the inser-
tion of a symmetric rectangular barrier cannot produce
a supervelocity. Hence, the method of Hartman to relate
the two peaks of the wave packets has no justification in
physics since they are not causally connected.

(4) The peak of the transmitted wave packet is formed
by distortion of the incident wave packet due to strong
amplitude reduction in combination with phase changes.
This phenomenon is not restricted to barriers with their
exponentially decaying near fields, but occurs also in other
systems. This has been demonstrated in the last chapter
using a transmission line with an LCR-resonance circuit
inserted. Here it was shown that the peak of the trans-
mitted packet can leave the circuit before the peak of the
incident Gaussian wave packet arrives at the circuit. By
considering a finite line section with inserted LCR circuit,
the phenomenon of supervelocities in the sense of Hart-
man also appeared. This discussion revealed once more
the physical irrelevance of the “transmission time” τHa

and of the “transmission velocity” cHa.
(5) We have to conclude that wave packets are in gen-

eral unsuitable to determine transmission times through
barriers.

We thank Rolf Landauer for reading the manuscript and point-
ing out Ref. [20] to us.
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